
Microscopic Models of Precursor Film Dynamics1

Esteban Moro2,3 and Douglas B. Abraham2

1Paper presented at the Fourteenth Symposium on Thermophysical

Properties, June 25-30, 2000, Boulder, Colorado.

2Theoretical Physics, University of Oxford

1 Keble Road, Oxford OX1 3NP, United Kingdom.

3To whom correspondence should be addressed.

June 6, 2000

1



Abstract

We consider a model for the phenomenon of droplet spreading when there

is a precursor film. The mechanism of growth involves diffusion of particles

in a supernatant gas described as a monolayer located directly above the

precursor film. Particles enter from the reservoir droplet and exit at the edge

of the precursor where they fall to the substrate plane causing the precursor

to grow. There is an analogous phenomenon of hole diffusion within the

precursor film itself. The techniques we employ are Monte Carlo simulations

and non-linear surface growth equations. We investigate the roughness of the

outer edge of the precursor film as a potential characteristic of the model

in question. Our approach is both numerical and analytic and allow us to

treat both interaction between particles and the substrate (regarded as a

continuum) and interparticle interactions. It is to be hoped that the roughness

characteristics will be confirmed experimentally.

KEY WORDS: Spreading; precursor film; Monte Carlo Simulations; stochas-

tic growth equations; Kardar-Parisi-Zhang equation; scaling; roughness
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1 Introduction

In 1989, a stimulating review article published in Nature by P. M. Ball [1] drew the

attention of condensed matter theorists to the lack of a theory (even a formative one)

to explain the highly interesting experimental work on spreading recently carried

out in France [2]. The system in question is various pure silanols spreading across

an extremely flat silicon wafer with oxidized surface. The thickness of the film is

measured by ellipsometry. Purity is maintained by pumping dry nitrogen through

the system. This does not cause any significant effect during an experiment; thus

the mechanism of spreading does not involve evaporation into the spectator phase,

followed by redeposition.

The experiments show that as the reservoir drop spreads over the plane substrate,

it is preceded by a film about 10 Å thick which is extremely flat and which can be

followed over large distances (� 107 Å). The precursor film thickness is determined

by ellipsometry showing that the edge of the precursor film spreads according to the

universal law h̄(t) ∝ t1/2.

Since then, a variety of theoretical models have been proposed to explain this

behavior. In all of them, the spreading of the precursor film is due to unbalanced

spreading forces caused by the attraction of the substrate. Apart from that, different

growth laws are obtained depending on the model. In particular, the t1/2 law has

been reproduced in the molecular dynamics (MD) simulations involving Lennard-

Jones molecules [3] or chainlike molecules [4]. In another approach, effective solid-

on-solid models has been considered in an attempt to reduce the greater number

of degrees of freedom [5]. Unfortunately, they give incorrect large-time behaviour

of h̄(t). From the Monte Carlo simulations of these simplified models it is easy

to realize the driving mechanism of the precursor film: the migration of matter

from the precursor edge to the droplet reservoir. This migration takes place due to

the diffusion of holes from the precursor to the reservoir and/or due to molecular

evaporation from the reservoir into a dilute supernatant gas phase directly above
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the precursor film and their diffusion to the precursor edge. In both cases, the mean

time needed for the particle/hole to reach the edge/reservoir from the reservoir/edge

is proportional to h(t) so we can estimate ∂th(t) ∝ 1/h(t) recovering the law h(t) ∝
t1/2.

Although the mean displacement of the precursor film has been studied exten-

sively during the last decade, no attention has been devoted to the shape of the pre-

cursor edge. Ellipsometry allows high (atomic) resolution normal to the substrate,

but insufficient in the plane to analyze the shape of the precursor edge. Howev-

er new microscopy techniques will allow to obtain information about the precursor

edge. On the other hand, the knowledge of more properties of these phenomena will

offer, from the theoretical point of view, the answer on the question about which

model is suitable to reproduce the experimental behaviour. Our approach in this

communication is to study one of these models and, in particular, the roughness

of the precursor edge, a quantity we believe could be accessible from experiments.

As we will see, the interface is a self-affine fractal, being characterized by universal

power laws and exponents.

The outline of the paper is at follows: in section 2 we introduce the model and

describe its main properties. Simulations for this model are presented in section 3,

while a coarse-grained mesoscopic equation for the interface is presented in section

4. Finally we discuss our results in 5.

2 Microscopic model

As in Ref. [6] we consider a lattice gas model with fluid particles interacting with

their nearest neighbors via the coupling constant J , which describes the cohesion

between fluid particles and is closely related to the surface tension. We also assume

the interaction between the fixed structureless substrate and the liquid particles to

be of the attractive van der Waals form V (z) = −A/z3, where z is the distance

from the substrate and A is proportional to the Hamaker constant. In the original
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reference, the microscopic dynamics is that of a lattice gas in which we assume that

the region above the substrate which is accessible to molecules is divided into a set

of cells whose centers form a regular lattice, and with proper initial conditions. In

our case, and for sake of feasibility, we consider only particles close to the substrate,

i.e. only two vertical layers z = 1, 2 which is the simplest configuration to take into

account both the precursor film and the supernatant gas. Within this approximation

the droplet reservoir is approximated by a boundary condition by which molecules

are fed in the lattice gas at a constant rate. We focus here on systems with planar

geometry, i.e., on systems in which the film spreads effectively only along one spatial

coordinate, e.g. y. Thus simulations are performed in 3D rectangular box (x, y, z) ∈
[1, Lx]× [1, Ly ]× [1, 2] (see Fig. 1). In each cell of the lattice, denoted by i = (x, y, z)

we define the occupation number ηi(t) to be one or zero depending on whether the

cell is occupied or not by a molecule. A molecule is said to be in the supernatant gas

if its vertical position over the substrate is z = 2, while the precursor film is made

of particles with z = 1. The droplet reservoir boundary condition is set along the

line y = 1, and throughout this communication we will fix this boundary condition

to be that by which ηi(t) = 1 for y = 1.

A particle can perform a jump to a unoccupied neighbour place in the lattice

with a hopping rate given by

r(i → f) = νe−β∆Hi→f (1)

where ∆Hi→f . is the energy difference between the final and initial, ν is the activa-

tion rate in the supernatant/precursor film and β = 1/kBT . We will suppose that

this energy difference is given by the Hamiltonian

H = Hl,l +Hl,s (2)

where

Hl,l = −J

2

∑

〈i,j〉
ηiηj (3)
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is the interaction between particles, with 〈i, j〉 meaning the sum over nearest neigh-

bours, and

Hl,s = −A∑

i

ηi (4)

is the interaction with the substrate. The sum in (4) is performed over all the

positions in the lattice with z = 1. Because we are only considering the case z = 1, 2

the Hamaker constant in (4) has been rescaled to be A when z = 1 and zero if z = 2.

To reproduce the experimental results we have used time continuous Monte Carlo

simulations in order to present the results in real time. We normalize the activation

rate to be ν = 1, and the size of the lattice was chosen Ly = 4096 with Lx ranging

from Lx = 32 to Lx = 256. Temperature is maintained below the 3D and 2D Ising

model critical values. Thus, it is small enough to maintain a low vapor pressure

both in 3D and 2D, that is, particles tend to be in the condensed/liquid phase.

Also we have chosen A to be large enough to prevent evaporation of single particles

from the substrate. Within these restrictions, several mechanism are unfavorable

energetically, like evaporation from the precursor film to the supernatant gas or

detaching of particles from the precursor edge and a subsequent free diffusion over

the substrate.

During the spreading process, several mechanisms are responsible for the pre-

cursor edge growth: (i) first, fluctuations in the precursor film allow hole formation.

These holes perform random motions and part of them eventually move towards

the reservoir where they die. (ii) second, particles from the reservoir will diffuse in

the supernatant gas over the precursor film until they find a hole or the precursor

edge, causing precursor film growth. (iii) particles can be detached from the pre-

cursor edge and then move diffusively over the substrate and, eventually, some of

them come back to the edge. As already noted, J is chosen large enough to pre-

vent evaporation in 2D, so these later events are suppressed energetically. Within

these considerations, the numerical values used throughout this communication are

A/kBT = 10 and J/kBT = 1, so that 3D evaporation is almost suppressed, but a

small amount of 2D evaporation over the substrate is allowed.
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3 Simulation results

In this section we present the results for the model. Firstly we have to identify

the interface, i.e. the precursor edge. This is not obvious, since the interface has

holes and overhangs. Nevertheless, we have used the cluster method in which the

interface h(x, t) is given by the maximum value for a fixed value of x of the length y

for the particles that belong to the main cluster. A particle is in the cluster if it is

connected to the droplet reservoir or/and a nearest neighbor which is in the cluster.

With this definition, we compute the mean height

h̄(t) =
Lx∑

x=1

〈h(x, t)〉, (5)

where 〈· · ·〉 stands for the average over different realizations of the Monte Carlo

simulation, and the interface roughness

w2 =
Lx∑

x=1

〈(h(x, t)− h̄(t))2〉. (6)

Results presented in Fig. 2 show that we indeed recover the universal law h̄(t) ∝ t1/2,

but only for large values of t. More interesting results are obtained for the roughness,

which grows in time like

w2(t) ∝ t2β, (7)

before it saturates to a value, w2
sat(Lx) that depends on the system size like w2

sat(Lx) ∝
L2α

x . This behaviour reflects that the interface is self-affine [7] and thus, its main

properties can be described in terms of the α and β exponents which in turn define

the universality class of the growth phenomena. The results presented in this com-

munication allow us to determine the exponent β, and some indications about the

possible value of α, but not a final answer about the universality properties of the

interface. Regarding the exponent β in Fig. 2 we see that its value from numerical

simulations is given by β = 0.095±0.006. Although the value is small it is definitely

non-zero, thus ruling out a logarithmic dependence.

To obtain the α exponent we will use the interface structure factor,

S(qx) = 〈ĥ(qx, t)ĥ(−qx, t)〉, (8)
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where ĥ(qx, t) is the Fourier transform of h(x, t). In the self-similar scenario for the

interface, and once the system has reached the asymptotic regime, the structure

factor scales as

S(qx) � q−d−2α
x , (9)

which allow us to obtain numerically the value of α. In Fig. 3 we plot the structure

factor showing that the data is compatible with d+ 2α � 5/2, that is α � 1/3.

We have checked that these results are independent of the parameters used in this

section as long as the temperature is below the 2D bulk critical temperature, which

in this case is estimated by the Ising model critical temperature J/T � 0.567. Also,

the exponents are consistent for different values of 32 < Lx < 256. Nevertheless a

different value of α and β can not be excluded for larger lateral sizes (Lx > 256,

which would change the universality class (see the discussion below).

4 Mesoscopic interface model

In the case of a well defined interface one is tempted to describe its evolution by a

stochastic differential equation

∂h

∂t
= F (h,∇h,∇2h) + η (10)

where η is the noise. This formulation in terms of stochastic differential equations

has been a successful framework for the study of rough interface dynamics and

has allowed to classified the different universality classes. Generally, in this models

the interface growth is described by processes that take place over the interface,

like adsorption, diffusion, desorption, etc., thus neglecting bulk dynamic processes.

However, in the spreading model studied above the interface growth and shape is

mainly due to both diffusion of particles in the bulk and over the interface. Despite

these differences and whenever the creation of holes at the interface and the flux

of incoming particles from the supernatant gas is small enough (i.e. when the bulk

8



dynamics is slow enough compared to the interface dynamics), our hope is that we

can still describe the interface by a equation like (10).

We now consider the form of the term F (h,∇h,∇2h). Firstly, there is a con-

served diffusion of matter over the interface. Thus the local changes in the interface

height h(x, t) are the result of the nonzero currents along the surface. Neglecting

desorption, the total number of particles remains unchanged during the diffusion

process, and then the current over the interface j(x, t) must obey the continuum

equation
∂h(x, t)

∂t
= −∇ · j(x, t). (11)

Assuming local behaviour, the current is given by the difference of a chemical po-

tential j(x, t) ∝ −∇µ(x, t). On the other hand, interface diffusion is the result

of activation of atoms in the interface, a process that depends on the number of

neighbors the atom has. Thus, we could approximate the chemical potential to be

inversely proportional to curvature, and so µ(x, t) ∝ −∇2h(x, t). Taken into account

the randomness present in the activated diffusion over the surface we end up with

the following equation

∂h(x, t)

∂t
= −κ∇4h(x, t) + ηd(x, t) (12)

where ηd(x, t) is a diffusive conservative noise:

〈ηd(x, t)〉 = 0, 〈ηd(x, t)ηd(x
′, t′) = −∇2δ(x− x′)δ(t− t′)〉 (13)

Equation (12) is the linear approximation for conservative diffusion over a general

interface. In our case, the interface growth is not symmetric under the transfor-

mation h → −h, so we expect non-linear terms to be important. The simplest

non-trivial term is that given by the conservative KPZ-type non-linearity

∂h(x, t)

∂t
= −κ∇4h(x, t) +

λ

2
∇2(∇h)2 + ηd(x, t) (14)

This equation was introduced and studied by Sun et al. [8] to study the dynamics of

a growing interface in which a conservation law is present. Nevertheless, the surface
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grows because of deposition of new material from the supernatant gas or because

of migrations of holes in the precursor film of holes from the edge to the droplet

reservoir. This process is non-conservative and depends on the local curvature, be-

cause is an activated process that depends on the number of neighbors a molecule

has. Up to first order we could assume that locally, the growth rate for this des-

orption/adsorption process is given by a ν∇2h term, and possibly by a non-linear

KPZ-like nonlinearity and a noise source. If both ν∇2h and κ∇4 terms are present in

the dynamics, the κ∇4 term determines the scaling behavior for Lx  L∗
x = (κ/ν)1/2

[7]. However for Lx � L∗
x, the ν∇2h term controls the scaling behaviour. Thus, we

expect that in this large-scale regime the interface will be described by

∂h(x, t)

∂t
= ν∇2h(x, t) +

λ

2
(∇h)2 + η(x, t) (15)

where η(x, t) is the usual non-conservative white noise. This equation was intro-

duced by Kardar et al. to study the interface when lateral growth is included [9].

Exponents for both eqs. (14) and (15) are known in one dimension. In the case of

conservative diffusion we obtain α = 1/3 and β = 1/11, while for non-conservative

growth, α = 1/2 while β = 1/3. Comparing these theoretical values with our sim-

ulations we obtain a rather accurate description of the interface by the Eq. (14)

when the lateral size Lx < 256. This result does not exclude the possibility that Eq.

(15) describes the system at large scales, but the crossover, L∗
x between the regimes

described by (14) and (15) could be large enough to be reached in our simulations

or even in the experiments.

5 Discussion and conclusion

In summary, we have studied the interface dynamics of a microscopic model for

precursor film spreading. In the simulations we reproduce the observed universal

t1/2 law for the precursor edge growth. Moreover, we have found that the interface

is self-similar and that its properties can be described in terms of some exponents α
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and β. From this considerations we have proposed a effective conservative stochastic

differential equation for the interface dynamics which is able to reproduced the

behaviour found in the simulations. Nevertheless, we argue that as well as the system

size is increased, the properties of the interface could change to a non-conservative

regime described by the KPZ equation. We hope that this work will stimulate some

experiments and simulations to verify our predictions about the way the precursor

film spreads over the substrate.
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Figure Captions

Figure 1. Cartoon of the microscopic model.

Figure 2. Time dependence of h̄ (solid line). Simulations are for Lx = 64. The

dashed line is the law t1/2.

Figure 3. Time dependence of the roughness w2(t). Simulations are for Lx = 64.

The dashed line is a power law fit to t0.095±0.006.

Figure 4. Structure factor of the precursor edge (solid line). Simulations are for

Lx = 64. The dashed line is the power law q−5/2
x .
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